
Data-mining with InterMine

InterMine is a data analysis platform designed for use with in the Life Sciences.
It is in use at many institutions hosting a diverse collection of datasets,
including SGD (Yeast), RGD (Rat), MGI (Mouse), ZFin (Zebra fish), Wormbase (C.
elegans) and FlyMine (Fruitfly). This workshop covers the use of the web
interface, and how to automate access to the same features.

All the tasks in this workshop will relate to FlyMine (which is maintained by us
in Cambridge). URLs for several sites are provided below

Overview

The tasks in this workshop will cover:

• Identifier Resolution
• User lists
• Queries
• Results and Reports
• Enrichment queries
• Exporting Data
• Progammable Interface

Some InterMine installations:

• FlyMine http://www.flymine.org
• YeastMIne (SGD) http://yeastmine.yeastgenome.org/yeastmine
• RatMine (RGD) http://ratmine.mcw.edu/ratmine
• MouseMine (MGI) http://www.mousemine.org/mousemine
• ZebrafishMine (ZFIN) http://zmine.zfin.org
• WormMine (Wormbase) http://www.wormbase.org/tools/wormmine

Webservice Boilerplate

from intermine.webservice import Service
service = Service(“www.flymine.org/query”, token = None)

Task 1: Identifier Resolution and Lists

InterMine is built with the concept of data-integration at its core, so identifier
resolution is very important for our users. Users can come to the system with a
range of identifier types (MOD ids, Ensembl ids, Uniprot accessions, outdated
synonyms, etc), and we try to match those to good, clean, consistent and
unique objects we know about. We keep track of this through the list
mechanism.

fig 1: http://www.flymine.org/query/bag.do

If there are any issues with the identifiers you need to decide what to do:

fig 2: http://www.flymine.org/query/buildBag.do

Once you have created a list, you can see that you have access to it in the
“mymine” section of the site:

fig 3:http://www.flymine.org/query/mymine.do

These features can all be accessed through webservices:

Creating a list:

POST $BASE/service/lists?token=$TOKEN&name=$NAME&type=$TYPE
[YOUR IDS]

In Python:

name = “My List”
type = “Gene”
src = “some/path/to/a/file/with/ids.txt”
list = service.create_list(src, name = name, list_type = type)

Getting information about your lists:

GET $BASE/service/lists?token=$TOKEN

In Python

service.get_all_lists()

Lists can be combined using set operations (union, intersection, difference),
edited and deleted.

TASKS

enter a set of identifiers and find the genes they resolve to
• Use the identifiers provided in the example.
• and/or Use the example file provided.

Resolve any issues to your satisfaction

With webservice:
 Create a list using the web services.
 Change its name.
 Find the public lists on flymine that share items with your list.
 Save a list made by removing those items from the public set.
 Delete one of your new lists.

Queries and Results

Identifier resolution is a useful tool, but imprecise - it accepts a wide range of
input and seeks only to find items of a certain type. More specific queries can
be run over all the data in an InterMine instance, and the results can be
inspected, revised and exported. Most instances of InterMine have a wide
range of commonly used queries predefined and able to be used with your
input, known as templates:

fig 4: http://www.flymine.org/query/templates.do

These queries have a small set of configurable parameters and can be run to
produce results:

fig 5: http://www.flymine.org/query/template.do?name=Pathway_Genes

The results are presented in a table:

This table allows the user to:
• page through results
• sort the rows
• add and remove columns
• add and remove filters
• inspect individual items
• download the results (or just a column of the results)
• get a URI, script or XML that represents this query
• create a list from the results

Templates are just a convenient short-cut for the underlying query (the
particular combination of columns and filters that makes up this view over the
data). You can see this by editing a template:

In time, if your needs are specific, you may wish to build up your own library of
saved queries and templates - any user can create and edit queries.

These features can also be accessed through the webservices. First, looking at
templates:

Get the list of available templates:

names = service.templates.keys()

Get a specific template, and run it:

q = service.get_template(“Pathway_Genes”)
filter = {“value”: “Apoptosis”}
symbols = [g.symbol for g in q.results(A = filter)]
print(symbols)

It can be much cleaner in code to use the raw underlying query
(templates are very much a UI convenience). The full query API is
powerful and complex, but thankfully queries can be generated in the
web interface, eg:

query = service.new_query("Pathway")
query.add_view("identifier", "name", "genes.secondaryIdentifier",
"genes.symbol")
query.add_constraint("name", "=", "Pentose phosphate pathway", "A")
query.add_constraint("dataSets.name", "=", "KEGG pathways data set",
"B")
query.add_constraint("genes.organism.name", "=", "Drosophila
melanogaster", "C")

for row in query.rows():
 print row["identifier"], row["name"] \
 row["genes.secondaryIdentifier"], row["genes.symbol"]

TASKS

1. Use templates to inspect the interactions and orthologues of a gene or a set
of genes.

• Which genes have a particularly large number of interactions with your
set of genes? What if you are only interested in “suppression”
interactions?

• Which orthologue data set has the most orthologues for genes in your
list? What if you only look at the orthologues in mosquito?

2. Add a column to your results:
• An attribute of one of the items in the table
• An attribute of an item not in the table (a new connection).

3. Filter the table by:
• Using the column-summaries
• By using the filter dialogue

4. Export the results:
• As a spreadsheet file (TSV, CSV)
• As a machine readable file (XML, JSON)
• To Galaxy or Genomespace

5. Create a new list of genes from these results (ie. the list of genes your genes
interact with) - see:
http://pythonhosted.org/intermine/intermine.lists.listmanager.ListManager-cla
ss.html#create_list.

6. Run one of your queries using python, and print out the results. (If you have
time, try adding a constraint, as in 1, a column as in 2, or creating a list from
the results, as in 3), entirely using the web services.

Analysing Lists

Lists can be using another specialised type of query: enrichment queries. These
are performed automatically on list analysis pages:

These queries attempt to assess how significant it is that items in your list are
associated with certain other items in the data warehouse (see
http://intermine.readthedocs.org/en/latest/embedding/list-widgets/enrichmen
t-widgets for method and discussion). You can see which items in your list
matched, and also inspect the related item (such as visiting the NCBI page for
the publication), as well as modifying the results by adjusting the correction
algorithm and p-value cut-off threshold.

Because the enrichment results are based on a statistical calculation, the
results can differ depending on the background population and whether or not
certain normalisations are made (such as for gene length).

These queries can also be run using webservices:

list = service.get_list(“my list name”)
for item in list.calculate_enrichment(“pathway_enrichment”):
 print item.identifier, item.p_value

Information on the widgets themselves is also available:

for w in service.widgets.values():
 print(“{name} - {description}”.format(**w))

TASKS

1. Which publications/GO Terms are enriched for your list?
2. How to the results change when the following parameters are adjusted:

1. Correction algorithm
2. Background population
3. Normalisation for gene length

3. Download the results as a spreadsheet file (TSV)
4. Run an enrichment query using the web services.

Useful Links and Addresses

www.intermine.org Web UI Documentation and handbook
iodocs.labs.intermine.org/flymine HTTP API documentation
pythonhosted.org/intermine Python API documentation

dev@intermine.org The InterMine users mailing list (for technical
queries)
help@intermine.org For general usage questions.

Each mine will also have its own help desk.

